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Abstract. For cubic (001), (110) and (111) surface systems with in-plane or perpendicular
magnetization, valence-band photoemission along the surface normal is studied analytically
by evaluating electric dipole transition matrix elements between half-space initial and final
states of the appropriate double-group symmetry. Explicit expressions are obtained for the
spin-polarization vector of the photoelectrons, and the spin-averaged intensity and its change
upon reversal of the magnetization direction, i.e. magnetic dichroism, for circularly and linearly
polarized incident light. These results firstly elucidate the origin of spin polarization and
dichroism in terms of an interplay between spin–orbit coupling and exchange, and secondly
provide a systematic overview of possible effects. In particular, we predict new types of
magnetic linear dichroism for s-polarized light in the case of magnetization perpendicular to
surfaces with a twofold rotation axis and in the case of in-plane magnetization of fcc (111) or
hcp (0001) surfaces.

1. Introduction

Spin-resolved photoemission is well established as a powerful tool for studying magnetic
properties of surfaces and ultrathin films (see, e.g., monographs by Feder (1985) and Kevan
(1992), recent original articles by Hartmannet al (1993a, b), Carboneet al (1993), Rader
et al (1994), Smithet al (1994), Wuet al (1994), and references therein). The traditional
analysis of the photoelectron spin-polarization component along the magnetization direction
has recently been complemented by asymmetries in the spin-averaged photocurrent produced
by circularly or linearly polarized radiation upon reversal of the magnetization. This so-
called magnetic circular dichroism (MCD) and linear dichroism (MLD) in photoemission
was first experimentally observed from core levels (Baumgartenet al 1990, Rothet al
1993a, b). Its potential relevance for magnetic storage technology was recently highlighted
by the successful element-specific imaging of magnetic domains (Schneideret al 1994).
There is also experimental evidence of MCD and MLD in valence-band photoemission
(Schneideret al 1991a, b, Bansmannet al 1992, Roseet al 1994). A systematic overview
and classification of the rather wide variety of magnetic dichroism effects have been provided
by Venus (1993, 1994) (see also Venuset al 1993). On the theoretical side, there have been a
series of many-body-type studies (see Thole and van der Laan (1994) and references therein),
which are however in practice restricted to an atomic approximation not quantitatively valid
for crystalline systems. Quantitative explanations of MCD and MLD in photoemission
from core levels have been obtained by means of relativistic multiple-scattering formalisms,
treating the final state as bulk-like (Ebertet al 1991) and as a time-reversed LEED state
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(Tamura et al 1994). As regards valence-band photoemission, a relativistic multiple-
scattering formalism (Halilovet al 1993) has recently been applied to Ni(001), yielding
prototype numerical results on MCD for magnetization normal to the surface (Scheunemann
et al 1994) and on two types of MLD due to s-polarized and p-polarized light in the case
of in-plane magnetization (Henket al 1994). While this type of numerical calculation is
indispensable for a detailed quantitative analysis of experimental results, more information
on general features and insight into the underlying physical mechanisms might be gained
by analytical calculations.

In this paper, we therefore present an analytical study of spin-polarization and magnetic
dichroic effects in valence-band photoemission. For the sake of transparency, we focus on
highly symmetric set-ups: normal emission, i.e. withk‖ = 0, from low-index surfaces with a
perpendicular fourfold, threefold or twofold rotational axis. In line with experimental reality,
the magnetization is assumed normal to the surface or parallel to it along a high-symmetry
direction. Within a relativistic single-particle framework, we calculate the photoelectron
spin-density matrix by evaluating electric dipole transition matrix elements produced by
s-, p- and circularly polarized radiation between initial and final half-space states, which
are constructed from symmetry-adapted basis functions. From this density matrix, we
obtain explicit expressions for the photoelectron spin-polarization vector, the spin-averaged
intensity and its asymmetry upon magnetization reversal, i.e. magnetic dichroism. Firstly,
we thus derive general relations, which are valid both in valence-band and in core-level
photoemission. Apart from their fundamental interest, they might be useful in checking
the reliability of experimental and of numerically calculated spectra. Secondly, the origin
of the components of the electron spin-polarization (ESP) vector is elucidated by explicitly
expressing them in terms of spin–orbit- and exchange-derived contributions. The occurrence
of the two contributions in a component is generally associated with magnetic dichroism.
Comparison of our results for ferromagnetic surface systems with their nonmagnetic limit
reveals an intimate connection between MLD and spin-polarization effects, which are
produced by linearly polarized light from nonmagnetic surfaces due to SOC. If such a ‘linear
spin-polarization effect’ (LSPE) involves an ESP component parallel to the magnetization,
MLD is found. The situation is analogous in the case of MCD, where the purely spin–orbit-
induced ESP component is due to optical orientation (Fano effect) by circularly polarized
light. We thus reach a unified understanding of both MCD and MLD.

This paper is organized as follows. In section 2 we give some basic properties of
relativistic electronic states in connection with photoemission. In section 3 we present
analytical results for normal photoemission from systems with magnetization normal to the
surface, before turning to the case of in-plane magnetization in section 4. In section 5 we
discuss the connection between magnetic dichroism and spin-polarization effects. Some
concluding remarks are made in section 6.

2. Symmetry-adapted electronic states and photoemission

The general framework of a fully relativistic one-step theory of photoemission from semi-
infinite crystalline systems, which incorporates both spin–orbit coupling and a ferromagnetic
ground state, and simpler spin-dependent approximations have been presented in chapter 4.5
in a monograph by Feder (1985). It may therefore suffice here to briefly specify the approach
used in the present work. Whilst a relativistic Green function formulation, like the one
worked out in detail by Halilovet al (1993), should be employed in numerical calculations
aiming at a quantitative comparison with experimental spectra, analytical expressions are
more transparent and instructive if one firstly replaces the initial-state Green function by
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its spectral representation in terms of states|i〉 (solutions of the Dirac equation without
an imaginary potential part), and secondly approximates the initial- and final-state four-
component spinors with two-component spinors|is〉 and |fs〉, with s = ±, which are
eigenfunctions of a Pauli-like Hamiltonian retaining of course spin–orbit coupling (see,
e.g., Feder (1985), p 131). One thus obtains a golden rule form for the spin-density matrix
of the photocurrent with elements

%ss ′(Ef ) =
∑
i,s ′′

〈fs |H ′|is ′′ 〉〈is ′′ |H ′|fs ′ 〉 δ(Ef − h̄ω − Eis′′ ). (1)

The final states|f+〉 and |f−〉 both have the energyEf , and only initial states with energy
Ef − h̄ω contribute. As a consequence of lattice periodicity parallel to the surface, all states
have the same surface-parallel wave vectork‖. The photon–electron interactionH ′ is E · r
with a spatially constant electric field vectorE of the incident light, i.e. we adopt the electric
dipole approximation, which is adequate for valence-band photoemission by radiation in the
vacuum–ultraviolet regime. With a view to explicitly evaluating equation (1) for highly
symmetrical set-ups, we now introduce symmetry-adapted forms of the initial and final
states.

Consider two sets of basis functions,{|g+
n 〉} and {|g−

n 〉}—consisting of an angular part
and a Pauli spinor (Rose 1961)—of an extra irreducible representation of the double group
associated with some point group, which transform under time reversalT̃ as T̃ |g+

n 〉 = |g−
n 〉

andT̃ |g−
n 〉 = −|g+

n 〉. The basis function sets are not unique, but the results presented below
do not depend on the particular choice. Electronic eigenstates of the Pauli Hamiltonian of a
nonmagneticsemi-infinite system can be expressed as|9s〉 = ∑

n αn|Rn〉|gs
n〉, s = ±, where

|Rn〉 are normalized radial functions andαn are real coefficients. These states obviously
transform under time reversal like their respective basis sets. Both have the sameαn and
|Rn〉 as well as the same energy, i.e. Kramers’ degeneracy. Formagneticsystems, Kramers’
degeneracy is lifted and we have

|9s〉 =
∑

n

α(s)
n |Rs

n〉|gs
n〉 s = ± (2)

with α(+)
n 6= α(−)

n and |R+
n 〉 6= |R−

n 〉 and exchange-split energy eigenvalues. As a
consequence of spin–orbit coupling, the spin-polarization expectation valueP of |9s〉
generally has an absolute value less than unity and may change sign with energy. But
it is still meaningful to refer to ‘majority’ and ‘minority’ states according to the direction
of their P .

We now use the above for further evaluating the photocurrent-density matrix%. The final
states|fs〉 at energyEf are the time-reversed LEED spinors with electron spins (relative
to some fixed direction) at the detector. They are expressed in the form of equation (2)
with complex coefficientsβ(s)

m :

|fs〉 =
∑
m

β(s)
m |R̃s

m〉|gs
m〉 s = ±. (3)

As is evident from group theory, the set of conceivable initial states (with energy
Ef − h̄ω) decomposes into pairs of initial states|ir+〉 and |ir−〉, wherer denotes the relevant
representations (cf. Falicov and Ruvalds 1968). The total photocurrent is thence the sum
of the photocurrents obtained for each pair. We note that in many practical cases only
one pair or even only one of its partners actually contributes, and therefore focus on these
partial photocurrents, drop the symmetry indexl and express the initial states|is〉 as in
equation (2). The dipole transition matrix elements

Wss ′ = 〈fs |E · r|is ′ 〉 s, s ′ = ± (4)
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then become linear combinations of matrix elements between the basis functions. The
(spatially uniform) electric field vectorE of the incident light is decomposed intoE‖ and
E⊥ parallel and normal to the plane of incidence. Defining

H⊥(ϕ) = i√
2

(
exp(iϕ)Y−1

1 + exp(−iϕ)Y 1
1

)
(5a)

H‖(ϕ) = 1√
2

(
exp(iϕ)Y−1

1 − exp(−iϕ)Y 1
1

)
(5b)

Hz = Y 0
1 (5c)

whereYm
l are the usual spherical harmonics, we obtain for the electric dipole operator

E · r =
√

4π

3
r
(
E‖(− sinϑ Hz + cosϑ H‖(ϕ)) + E⊥H⊥(ϕ)

)
. (6)

The polar and azimuthal anglesϑ and ϕ refer to the direction of light incidence. For s-
and p-polarized light we have(E‖, E⊥) = (0, E) and (E, 0), and for left- (right-) handed
circularly polarized light(E‖, E⊥) = E(±i, 1)/

√
2. Equation (6) and the state expansion

equations (2) and (3) are then used to evaluate the matrix elementsWss ′ . The resulting
expressions are employed in the photoelectron spin-density matrix

% =
( |W++|2 + |W+−|2 W++W?

−+ + W+−W?
−−

W?
++W−+ + W?

+−W−− |W−+|2 + |W−−|2
)

. (7)

The (not spin-resolved) intensityI (ϕ, ϑ) and the electron spin-polarization (ESP) vector
P (ϕ, ϑ) of the energy- and angle-resolved symmetry-specific photocurrent are then easily
obtained asI (ϕ, ϑ) = tr(%) and P (ϕ, ϑ) = tr(σ%)/I (ϕ, ϑ). Magnetic dichroism can be
characterized by the (not normalized) asymmetryA(ϕ, ϑ) = I (ϕ, ϑ,M ) − I (ϕ, ϑ,−M ),
i.e. the intensity change upon magnetization reversal.

3. Results for magnetization normal to the surface

We now evaluate the above expressions for normal emission from surface systems with two-,
three-, and fourfold rotational axes and with magnetizationM normal to the surface. The
underlying nonmagnetic point groups are 2mm, 3m, and 4mm, i.e. C2v, C3v, and C4v in the
Scḧonflies notation. Taking into accountM , the surface normal remains ann-fold rotation
axis, but the mirror operationsm are no longer symmetry operations, since they reverse
M . We thus have areduction of symmetrywith respect to the nonmagnetic case. Instead
of applying magnetic double-group theory (Falicov and Ruvalds 1968, Ruvalds and Falicov
1968), we adopt a more transparent approach, which facilitates contact with the nonmagnetic
case and reveals easily the roles played by the spin–orbit and by the exchange interaction in
producing the photoelectron spin-polarization vector and magnetic dichroism. The essential
idea is to express initial and final states in terms of the basis functions of the irreducible
representations of thenonmagnetic double groups, but with Kramers’ degeneracy lifted. We
then use these forms to evaluate the dipole transition matrix elementsWss ′ (cf. equation (4)).
Details of this approach are given in the case of twofold rotation symmetry, to which we
now turn.

3.1. The twofold rotational axis

Spin–orbit coupling mixes the four one-dimensional representations61, . . . , 64 of the single
group 2mm into one representation65 of the corresponding double group (see, for example,
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Inui et al 1990). Initial and final states can then be written in the form

|9s〉 = c
(s)

1 |61s
5 〉|s〉 + c

(s)

2 |62s
5 〉|s〉 + c

(s)

3 |63s
5 〉|−s〉 + c

(s)

4 |64s
5 〉|−s〉. (8)

The |s〉 are the Pauli spinors (aligned with respect toM ) and the|6is
5 〉 (with i = 1, . . . , 4)

are normalized spatial parts of the single-group symmetry6i ; the weight coefficientsc(s)
n

directly reflect the spin–orbit coupling. The upper indexs = ± is needed because of the
absence of Kramers’ degeneracy due to the exchange interaction. Without magnetization,
|6n+

5 〉 = |6n−
5 〉. Dipole matrix elements between states of the form of equation (8) are

easily evaluated, since the dipole operator does not affect the Pauli spinors and couples
the spatial parts according to the usual nonrelativistic dipole selection rules. As the final
states have pure61

5 spatial symmetry outside the crystal and still predominantly so inside,
we approximate them in the following as|fs〉 = |61s

5 〉|s〉, i.e. we neglect SOC in the final
state. The nonvanishing partial matrix elements involving final-state spatial parts61s

5 and
initial-state parts6is ′

5 are denoted byMiss ′
. The dipole matrix elements then become

W++ = − sinϑ E‖M
(1++)
⊥ (9a)

W+− = E⊥
{
− sinϕ M

(3+−)
‖ + i cosϕ M

(4+−)
‖

}
+E‖ cosϑ

{
cosϕ M

(3+−)
‖ + i sinϕ M

(4+−)
‖

}
(9b)

W−+ = E⊥
{

sinϕ M
(3−+)
‖ + i cosϕ M

(4−+)
‖

}
+E‖ cosϑ

{
− cosϕ M

(3−+)
‖ + i sinϕ M

(4−+)
‖

}
(9c)

W−− = − sinϑ E‖M
(1−−)
⊥ . (9d)

The corresponding results for a nonmagnetic system are easily recovered from the above
by noting that for vanishing exchange splittingMi+− = Mi−+ = Mi .

For s-polarized light, i.e. E⊥ = E and E‖ = 0, we obtain upon substitution of
equation (8) into equation (7)

I (ϕ) = sin2 ϕ
(
|M(3+−)

‖ |2 + |M(3−+)
‖ |2

)
+ cos2 ϕ

(
|M(4+−)

‖ |2 + |M(4−+)
‖ |2

)
+ sin 2ϕ

(
Im(M

(3−+)
‖ M

(4−+)
‖

?
) − Im(M

(3+−)
‖ M

(4+−)
‖

?
)
)

(10)

and

Pz(ϕ) =
{

sin2 ϕ
(
|M(3+−)

‖ |2 − |M(3−+)
‖ |2

)
+ cos2 ϕ

(
|M(4+−)

‖ |2 − |M(4−+)
‖ |2

)
− sin 2ϕ

(
Im(M

(3−+)
‖ M

(4−+)
‖

?
) + Im(M

(3+−)
‖ M

(4+−)
‖

?
)
)} /

I (ϕ). (11)

The surface-parallel spin-polarization componentsPx and Py are zero. Since reversal of
the magnetization interchangesM

(i+−)
‖ with M

(i−+)
‖ , the asymmetry, which constitutes the

MLD, is obtained from equation (10) as

A(ϕ) = 2 sin 2ϕ
(

Im(M
(3−+)
‖ M

(4−+)
‖

?
) − Im(M

(3+−)
‖ M

(4+−)
‖

?
)
)

. (12)

This expression directly reveals spin–orbit coupling as the physical origin of this type
of MLD: the productsM(3−+)

‖ M
(4−+)
‖

?
arise from the simultaneous presence of symmetry

types63
5 and64

5 in the initial state, equation (8), which is brought about by SOC. In the
nonmagnetic limit,A(ϕ) is seen to be identically zero, as it should be. Also, there is no
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MLD if the electric field vector lies in a mirror plane (ϕ = 0 or π/2). The spin–orbit-
induced product terms also occur in the above expression forPz in addition to the first two
terms, which are due to exchange interaction. IfM equals zero, this expression becomes

Pz(ϕ) = 2 sin 2ϕ Im(M
(3)
‖ M

(4)
‖

?
)
/

I (ϕ) (13)

i.e. the ‘linear spin-polarization effect’ predicted by Henk and Feder (1994) for 2mm-
symmetry nonmagnetic surfaces.

Our above analytical expressions are in line with what follows from general symmetry
arguments. The reflection operationsm1 andm2 at the(x, z)- and(y, z)-plane do not leave
the total set-up invariant, but their combinationm1m2 does. The latter dictates thatPx andPy

are zero, since it reverses their signs, but does not impose any restriction onPz. Reflection
m1 implies the relationsI (ϕ, M ) = I (−ϕ, −M ) andPz(ϕ, M ) = −Pz(−ϕ, −M ), which
can also be seen directly from our above formulae.

For off-normally incidentp-polarized light, we obtain for the intensity

I (ϑ, ϕ) = sin2 ϑ
(
|M(1++)

⊥ |2 + |M(1−−)
⊥ |2

)
+ cos2 ϑ cos2 ϕ

(
|M(3+−)

‖ |2 + |M(3−+)
‖ |2

)
+ cos2 ϑ sin2 ϕ

(
|M(4+−)

‖ |2 + |M(4−+)
‖ |2

)
+ cos2 ϑ sin 2ϕ

(
Im(M

(3+−)
‖ M

(4+−)
‖

?
) − Im(M

(3−+)
‖ M

(4−+)
‖

?
)
)

(14)

and three nonzero ESP components

Pz(ϑ, ϕ) = 1

I (ϑ, ϕ)

[
sin2 ϑ

(
|M(1++)

⊥ |2 − |M(1−−)
⊥ |2

)
+ cos2 ϑ cos2 ϕ

(
|M(3+−)

‖ |2 − |M(3−+)
‖ |2

)
+ cos2 ϑ sin2 ϕ

(
|M(4+−)

‖ |2 − |M(4−+)
‖ |2

)
+ cos2 ϑ sin 2ϕ

(
Im(M

(3+−)
‖ M

(4+−)
‖

?
) + Im(M

(3−+)
‖ M

(4−+)
‖

?
)
)]

(15a)

Px(ϑ, ϕ) = sin 2ϑ

I (ϑ, ϕ)

[
cosϕ

(
Re(M(1++)

⊥ M
(3−+)
‖

?
) − Re(M(1−−)

⊥ M
(3+−)
‖

?
)
)

− sinϕ
(

Im(M
(1++)
⊥ M

(4−+)
‖

?
) + Im(M

(1−−)
⊥ M

(4+−)
‖

?
)
)]

(15b)

Py(ϑ, ϕ) = − sin 2ϑ

I (ϑ, ϕ)

[
cosϕ

(
Im(M

(1++)
⊥ M

(3−+)
‖

?
) + Im(M

(1−−)
⊥ M

(3+−)
‖

?
)
)

− sinϕ
(

Re(M(1++)
⊥ M

(4−+)
‖

?
) − Re(M(1−−)

⊥ M
(4+−)
‖

?
)
)]

. (15c)

The asymmetryA(ϑ, ϕ) is the same as for s-polarized light (equation (12)) but multiplied
by cos2 ϑ , i.e. there is again MLD, which is due to SOC between63

5 and 64
5 symmetry

initial-state parts.
Pz again consists of an exchange-induced part (the first three terms in equation (15a))

and a spin–orbit-induced part (the last term in equation (15a)), which in the nonmagnetic
limit again becomes the recently predicted LSPE (Henk and Feder 1994).Px andPy also
do not vanish in the nonmagnetic case, but reproduce the LSPE due to p-polarized light,
with P normal to the reaction plane, which was predicted by Tamura and Feder (1991a, b)
and experimentally verified by Heinzmann’s group (Schmiedeskampet al 1991, Irmeret al
1992).
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The intensity and ESP fulfil the symmetry relation

(I, Px, Py, Pz)
ϕ→−ϕ,M→−M−→ (I, −Px, Py, −Pz). (16)

The relations forPx andPy follow immediately from the symmetry operation 2◦ m1 ◦ m2.
Furthermore,

(I, Px, Py, Pz)
ϑ→−ϑ−→ (I, −Px, −Py, Pz) (17)

as is obvious from the twofold rotational symmetry. Note that the transformationϑ → −ϑ

is identical toϕ → ϕ + π . The results for s-polarized light can be easily obtained from
equations (14) and (15c) by settingϑ = 0 andϕ → ϕ + π/2.

For circularly polarized light, we confine ourselves (in this paper) to the case of normal
incidence, i.e.ϑ = 0. The intensity and ESP are given by

I (σ±) = 1

2

(
|M(3+−)

‖ |2 + |M(3−+)
‖ |2 + |M(4+−)

‖ |2 + |M(4−+)
‖ |2

∓
(

Re(M(3+−)
‖ M

(4+−)
‖

?
) − Re(M(3−+)

‖ M
(4−+)
‖

?
)
))

(18)

and

Pz(σ±) = 1

2I (σ±)

(
|M(3+−)

‖ |2 − |M(3−+)
‖ |2 + |M(4+−)

‖ |2 − |M(4−+)
‖ |2

∓
(

Re(M(3+−)
‖ M

(4+−)
‖

?
) + Re(M(3−+)

‖ M
(4−+)
‖

?
)
))

(19)

where the two signs correspond to the two helicities of the light(σ±). The asymmetry,
i.e. the MCD, is immediately obtained as

A(σ±) = ∓2
(

Re(M(3+−)
‖ M

(4+−)
‖

?
) − Re(M(3−+)

‖ M
(4−+)
‖

?
)
)

. (20)

Obviously, it requires for its existence SOC between initial-state parts of63
5 and 64

5
symmetry as well as exchange splitting. It is interesting to note that MCD (equation (20))
involves the real part of the matrix element product, whereas MLD (cf. equation (12)) is
described by its imaginary part. By measuring, in addition to the intensity, the asymmetries
for circularly and linearly polarized light, one can therefore obtain information not only
about the modulus of the transition matrix elements, but also about their real and imaginary
parts, i.e. their phase.

The intensity and ESP obey the relationsI (σ±, M ) = I (σ∓, −M ), andPz(σ±, M ) =
−Pz(σ∓, −M ). Furthermore, the intensity is closely related to that for s-polarized light,

I (s, ϕ = 0) + I (s, ϕ = π/2) = I (σ+) + I (σ−). (21)

3.2. The fourfold rotational axis

Electronic states of surface systems with 4mm symmetry, i.e. C4v in Scḧonflies notation, can
be classified according to two irreducible representations,16 and17, of the (nonmagnetic)
double group. For magnetization normal to the surface, this classification still holds except
for the lifting of Kramers’ degeneracy. We recall that in the case of16 SOC mixes spatial
parts of11

6 and15
6 spatial symmetry. The final states have16 symmetry, and we restrict

ourselves again to the dominant part,11
6.

Let us first consider photoemission from16 initial states. Proceeding analogously to the
above method for twofold rotational symmetry, we obtain for s-polarized light the intensity

I = |M(5+−)
‖ |2 + |M(5−+)

‖ |2 (22)
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and for the ESP, which only has a component normal to the surface,

Pz =
(
|M(5+−)

‖ |2 − |M(5−+)
‖ |2

) /
I. (23)

In contrast to our above findings for surfaces with twofold rotational axes, both the
intensity and the ESP are independent of the azimuthϕ, and there is no MLD. This
is easily understood from our previous results: going from 2mm to 4mm symmetry
we get M

(3+−)
‖ = M

(4+−)
‖ and M

(3−+)
‖ = M

(4−+)
‖ . Further we obtain, in accordance

with symmetry arguments, the following (rather trivial) relations:I (M ) = I (−M ) and
Pz(M ) = −Pz(−M ).

We now turn to p-polarized light. In this case, the intensity is obtained as

I (ϑ) = sin2 ϑ
(
|M(1++)

⊥ |2 + |M(1−−)
⊥ |2

)
+ cos2 ϑ

(
|M(5+−)

‖ |2 + |M(5−+)
‖ |2

)
. (24)

All three components of the ESP are nonzero:

Pz(ϑ) =
{

sin2 ϑ
(
|M(1++)

⊥ |2 − |M(1−−)
⊥ |2

)
+ cos2 ϑ

(
|M(5+−)

‖ |2 − |M(5−+)
‖ |2

)} /
I (ϑ)

(25a)

Px(ϑ, ϕ) = − sin 2ϑ
{

cosϕ
(

Re(M(1++)
⊥ M

(5−+)
‖

?
) − Re(M(1−−)

⊥ M
(5+−)
‖

?
)
)

− sinϕ
(

Im(M
(1++)
⊥ M

(5−+)
‖

?
) + Im(M

(1−−)
⊥ M

(5+−)
‖

?
)
)} /

I (ϑ) (25b)

Py(ϑ, ϕ) = sin 2ϑ
{

cosϕ
(

Im(M
(1++)
⊥ M

(5−+)
‖

?
) + Im(M

(1−−)
⊥ M

(5+−)
‖

?
)
)

− sinϕ
(

Re(M(1++)
⊥ M

(5−+)
‖

?
) − Re(M(1−−)

⊥ M
(5+−)
‖

?
)
)} /

I (ϑ). (25c)

There is no MLD. Reflection at the (x, z)-plane implies

(I, Px, Py, Pz)
ϕ→−ϕ,M→−M−→ (I, −Px, Py, −Pz). (26)

Furthermore, we have

Px(ϑ, ϕ) = cosϕ Px(ϑ, 0) − sinϕ Py(ϑ, 0) (27a)

Py(ϑ, ϕ) = sinϕ Px(ϑ, 0) + cosϕ Py(ϑ, 0). (27b)

For right-handed(σ+) and left-handed(σ−) circular light, we obtain

I (σ+) = 2|M(5+−)
‖ |2 and I (σ−) = 2|M(5−+)

‖ |2. (28)

In the first case (σ+), only transitions from initial states of symmetry15
6 of the function

class|f −
n 〉 into the final state of the function class|f +

m 〉 can take place. In the latter case,
the two function classes are interchanged. In general, this may lead to a pronounced MCD
(Scheunemannet al 1994). The photoelectrons are completely polarized,Pz(σ±) = ±1.
But note that the ESP given here is in fact a partial polarization, in the sense that the
complete intensity (due to both16 and 17 initial states) is replaced by that arising only
from 16 initial states. The intensity asymmetry (MCD) can be obtained by reversing
the magnetization or by reversing the photon helicity,I (σ±, M ) = I (σ∓, −M ) and
Pz(σ±, M ) = −Pz(σ∓, M ). Furthermore, the intensity is closely related to that for s-
polarized light,I (s) = (I (σ+) + I (σ−)) /2.

Now we consider emission from initial states with17 symmetry. BecauseW11 andW22

are equal to zero, onlyPz is nonzero. For s-polarized light, we obtain the same result as
for 16 initial states (see equation (22) and subsequent equations).

In contrast to16 initial states (where11
6 couples to the electric field vector component

normal to surface),17 initial states couple only to the electric field vector component parallel



Magnetic dichroism in photoemission: analytical results 55

to the surface. Therefore, the intensity and ESP for p-polarized light are very closely related
to those for s-polarized light, carrying an additional (geometrical) factor:

I (p) = cos2 ϑ
(
|M(5+−)

‖ |2 + |M(5−+)
‖ |2

)
= cos2 ϑI (s) (29)

andPz(p) = Pz(s).
For circularly polarized light, the intensity and ESP are given by

I (σ+) = 2|M(5−+)
‖ |2 and I (σ−) = 2|M(5+−)

‖ |2 (30)

andPz(σ±) = ∓1. Note that the ESP is reversed with respect to that for16 initial states
(compare, e.g., equation (28)) (Wöhlecke and Borstel 1984) and both the intensity and the
ESP obey the same symmetry relations as for16 initial states.

3.3. The threefold rotational axis

Electronic states at surfaces with 3m symmetry, i.e. C3v in Scḧonflies notation, may be
classified according to two irreducible representations of the respective double group,36

and34,5. The final state has31
6 symmetry.

First, consider transitions from36 initial states. Comparing the transition matrix
elements with those obtained for16 initial states (4mm symmetry), we note thatM(3+−)

‖
corresponds toM(5+−)

‖ andM
(3−+)
‖ to M

(5−+)
‖ . Therefore, we get the same results as given

in equations (22)–(28), but withM(5ss ′)
‖ replaced byM(3ss ′)

‖ . In particular, there is also no
MLD.

We now turn to photoemission from34,5 initial states. For s-polarized light we obtain
the intensity

I = 1

2

(
|M(3++)

‖ |2 + |M(3+−)
‖ |2 + |M(3−+)

‖ |2 + |M(3−−)
‖ |2

)
. (31)

The z-component of the ESP is exclusively due to exchange splitting and is given by

Pz = 1

2I

(
|M(3++)

‖ |2 + |M(3+−)
‖ |2 − |M(3−+)

‖ |2 − |M(3−−)
‖ |2

)
. (32)

The components parallel to the surface are due to both exchange and SOC, i.e.

Px(ϕ) = 1

I

[
− sin 2ϕ

(
Re(M(3++)

‖ M
(3−+)
‖

?
) − Re(M(3−−)

‖ M
(3+−)
‖

?
)
)

− cos 2ϕ
(

Im(M
(3++)
‖ M

(3−+)
‖

?
) + Im(M

(3−−)
‖ M

(3+−)
‖

?
)
)]

(33a)

Py(ϕ) = −1

I

[
− cos 2ϕ

(
Re(M(3++)

‖ M
(3−+)
‖

?
) − Re(M(3−−)

‖ M
(3+−)
‖

?
)
)

− sin 2ϕ
(

Im(M
(3++)
‖ M

(3−+)
‖

?
) + Im(M

(3−−)
‖ M

(3+−)
‖

?
)
)]

. (33b)

Without exchange splitting, we haveM(3++)
‖ = M

(3−−)
‖ and M

(3+−)
‖ = M

(3−+)
‖ . This

leads to the intensity

I =
(
|M(3++)

‖ |2 + |M(3+−)
‖ |2

)
(34)

and to

Pz = 0 (35a)

Px(ϕ) = −2

I
cos 2ϕ Im(M

(3++)
‖ M

(3−+)
‖

?
) (35b)

Py(ϕ) = 2

I
sin 2ϕ Im(M

(3++)
‖ M

(3−+)
‖

?
) (35c)



56 J Henk et al

which may be expressed as

Px(ϕ) = cos 2ϕ Px(0) and Py(ϕ) = − sin 2ϕ Px(0). (36)

We thus retrieve the result for the LSPE of 3m surfaces (Tamuraet al 1987), where s-
polarized light produces an in-plane spin polarization.

We obtain the (typical) symmetry relations for the intensity and the normal component
of the ESP,

(I, Px, Py, Pz)
ϕ→−ϕ,M→−M−→ (I, Px, −Py, −Pz) (37)

and

Px(ϕ) = cos 2ϕ Px(0) − sin 2ϕ Py(0) (38a)

Py(ϕ) = − sin 2ϕ Px(0) + cos 2ϕ Py(0). (38b)

Analogously to the case for 4mm symmetry, 34,5 initial states couple only to the
components of the electric field vector parallel to the surface. Therefore, results for p-
polarized light are like those for s-polarized light except for the geometrical factor cos2 ϑ

(cf. equation (29)).
For circularly polarized light we find

I (σ+) = |M(3−+)
‖ |2 + |M(3−−)

‖ |2 and I (σ−) = |M(3+−)
‖ |2 + |M(3++)

‖ |2 (39)

andPz(σ±) = ∓1. The (partial) polarization is complete and reversed with respect to that
of 36 initial states.

Table 1. Magnetic dichroic effects and photoelectron spin-polarization components for
magnetizationM normal to surfaces (parallel to thez-axis) with twofold, threefold, or fourfold
rotational axes, i.e. with spatial symmetry groups 2mm, 3m, and 4mm in the nonmagnetic limit.
s, p, and circ. stand for s-, p-, and normally incident circularly polarized light. The signs in
brackets indicate whether the respective ESP component occurs (+ sign) or does not occur
(− sign) if only SOC (first sign), only exchange (second sign), or both (third sign) are present.
MLD and MCD occur if a spin-polarization component parallel toM is produced by SOC in
the nonmagnetic case.

2mm

light Px Py Pz I

s (−, −, −) (−, −, −) (+, +, +) MLD
p (+, −, +) (+, −, +) (+, +, +) MLD
circ. (−, −, −) (−, −, −) (+, +, +) MCD

4mm

light Px Py Pz I

s (−, −, −) (−, −, −) (−, +, +)

p (+, −, +) (+, −, +) (−, +, +)

circ. (−, −, −) (−, −, −) (+, +, +) MCD

3m

light Px Py Pz I

s (+, −, +) (+, −, +) (−, +, +)

p (+, −, +) (+, −, +) (−, +, +)

circ. (−, −, −) (−, −, −) (+, +, +) MCD

In table 1 we summarize our findings for photoemission from systems with
magnetization normal to the surface. For systems with twofold rotational axes, we observe
both MLD and MCD, whereas for surfaces with three- or fourfold rotational symmetry we
find only MCD but no MLD.
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4. Results for magnetization parallel to the surface

We now address surface systems with in-plane magnetizationM . Irrespective of whether the
corresponding nonmagnetic system has 2mm, 3m or 4mm symmetry, the magnetic system
in this case has no rotational symmetry axis and at most one mirror plane. Nevertheless, the
photoemission intensity and ESP expressions and in particular the occurrence of magnetic
dichroism depend on the specific mirror symmetries of the corresponding nonmagnetic
system and on the orientation ofM relative to these mirror planes. We can distinguish
three practically important cases. (i) The nonmagnetic system has two mirror planes
(perpendicular to each other and to the surface plane) andM is parallel to one of them,
for example the(yz)-plane. This is a typical for cubic (001) and (110) surfaces, where
M points from an atom to one of its nearest neighbours. The other two cases involve
only one mirror plane (chosen as the(xz)-plane), like (111) surfaces of cubic crystals and
(0001) surfaces of hcp crystals. (ii)M is perpendicular to the mirror plane (pointing to a
nearest-neighbour atom) or (iii)M is not perpendicular to the mirror plane. In the first two
cases, the system is characterized by the spatial symmetry groupm (i.e. Cs in the Scḧonflies
notation). In the third case there is no nontrivial symmetry operation.

Table 2. Symmetry-adapted basis functions for systems with two mirror planes—(x, z) and
(y, z)—(in the nonmagnetic limit) andM parallel to thex-axis, i.e. parallel to the surface and
to the (y, z) mirror plane. The angular-momentum-quantization axis is normal to the surface;
the spin-quantization axis is parallel to the magnetization (Pauli spinors|α〉 and |β〉). l andm

denote the quantum numbers of the angular momentum and its projection onto thez-axis.

|g+
n 〉 |g−

n 〉
S1 Y 0

l |α〉 Y 0
l |β〉 l > 0

(1/
√

2)
(
Ym

l + Y−m
l

) |α〉 [(−1)m/
√

2]
(
Ym

l + Y−m
l

) |β〉 l > 1, −l 6 m 6 l

S2 (1
√

2)
(
Ym

l − Y−m
l

) |β〉 [−(−1)m/
√

2]
(
Ym

l − Y−m
l

) |α〉 l > 1, −l 6 m 6 l

Table 3. The connection of single-group representations of the symmetry-adapted basis functions
given in table 2 and those for 2mm and 4mm symmetry.

S1 S2

2mm 61, 64 62, 63

4mm 11, 12, 15 1′
1, 1

′
2, 15

4.1. Cubic (001) and (110) surfaces

We are now dealing with case (i), withM chosen along thex-axis. It is convenient
to introduce symmetry-adapted basis functions (see table 2), the angular-momentum-
quantization axis of which is normal to the surface, whereas the spin-quantization axis
is parallel to the magnetization. These are closely related to those for 2mm symmetry (Inui
et al 1990). In table 3 we give the connection between spatial parts of basis functions
for 2mm and 4mm symmetry and the symmetry-adapted basis functions. Because the
quantization axes for angular momentum and spin differ, a unitary transformation has to be
applied to the spin-density matrix (Kessler 1985). Initial and final states then have the form

|9s〉 = c
(s)

1 |S1s〉|s〉 + c
(s)

2 |S2s〉|−s〉 s = ± (40)
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where the notation is analogous to what we used in equation (8) and again explicitly displays
SOC. The evaluation of the photoelectron spin-density matrix proceeds in the same way
as described in subsection 3.1. It should be noted, however, that now there are two types
of matrix element involving initial-state parts ofS1 spatial symmetry:M(1ss)

‖ is due to the

dipole operator partH‖ andM
(1ss)
⊥ to Hz (cf. equations (5c) and (6)).

For p-polarized lightwe obtain

I (ϑ, ϕ) = sin2 ϑ
(
|M(1++)

⊥ |2 + |M(1−−)
⊥ |2

)
+ cos2 ϑ sin2 ϕ

(
|M(1++)

‖ |2 + |M(1−−)
‖ |2

)
+ cos2 ϑ cos2 ϕ

(
|M(2+−)

‖ |2 + |M(2−+)
‖ |2

)
+ sin 2ϑ sinϕ

(
Im(M

(1++)
⊥

?
M

(1++)
‖ ) − Im(M

(1−−)
⊥

?
M

(1−−)
‖ )

)
(41)

and

Px(ϑ, ϕ) =
{

sin2 ϑ
(
|M(1++)

⊥ |2 − |M(1−−)
⊥ |2

)
+ cos2 ϑ sin2 ϕ

(
|M(1++)

‖ |2 − |M(1−−)
‖ |2

)
+ cos2 ϑ cos2 ϕ

(
|M(2+−)

‖ |2 − |M(2−+)
‖ |2

)
+ sin 2ϑ sinϕ

(
Im(M

(1++)
⊥

?
M

(1++)
‖ ) + Im(M

(1−−)
⊥

?
M

(1−−)
‖ )

)} /
I (42a)

Pz(ϑ, ϕ) = −
{

sin 2ϑ cosϕ
(

Re(M(1++)
⊥ M

(2−+)
‖

?
) − Re(M(1−−)

⊥ M
(2+−)
‖

?
)
)

+ cos2 ϑ sin 2ϕ
(

Im(M
(1++)
‖ M

(2−+)
‖

?
) + Im(M

(1−−)
‖ M

(2+−)
‖

?
)
)}

(42b)

Py(ϑ, ϕ) = −
{

sin 2ϑ cosϕ
(

Im(M
(1++)
⊥ M

(2−+)
‖

?
) + Im(M

(1−−)
⊥ M

(2+−)
‖

?
)
)

− cos2 ϑ sin 2ϕ
(

Re(M(1++)
‖ M

(2−+)
‖

?
) − Re(M(1−−)

‖ M
(2+−)
‖

?
)
)}

. (42c)

Since the last term in the above intensity expression reverses sign upon reversal ofM , there
is an MLD, which is maximal for the azimuthal angle of photon incidenceϕ = π/2 and
vanishes forϕ = 0. In the first case, the reaction plane is the (y, z)-plane, i.e. perpendicular
to M (aligned along thex-axis). From the above expressions, the ESP componentsPy and
Pz are seen to vanish, and the nonzeroPx is composed of two exchange-induced terms,
which change sign upon reversal ofM , and a third spin–orbit-induced term, which does not
change sign and survives in the nonmagnetic limit, retrieving the ‘linear spin-polarization
effect’ predicted by Tamura and Feder (1991a, b). We thus find again, as above in the case
of twofold symmetry with magnetization normal to the surface, that the occurrence of both
an exchange- and a spin–orbit-induced additive contribution in one of the ESP components
is associated with MLD. This connection is explicit in our above formulae: the last term
in I , which is responsible for MLD, and the last term inPx , the spin–orbit contribution,
involve the same matrix element combinations Im(M

(1ss)
⊥

?
M

(1ss)
‖ ) (with s = ±).

In the case whereϕ = 0, in which M is parallel to the reaction plane, equation (41)
shows that there is no MLD, but all three ESP components are nonzero.Px is seen to be
due to exchange only, reversing its sign upon reversal ofM , and Py due to SOC only,
whereasPz involves both interactions in such a way that it would vanish if one or the other
were absent. This interplay between exchange interaction and SOC is clearly different from
the additive one in formingPx in the previously discussed case whereϕ = π/2.

For generalϕ, our formulae yield the relation

(I, Px, Py, Pz)
ϕ→−ϕ,M→−M−→ (I, −Px, Py, −Pz). (43)
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This also follows directly by considering reflection of the total set-up at the (x, z)-plane
(which is, however, not a symmetry operation).

The results fors-polarized lightincident at azimuthϕ can very easily be obtained from
the above ones for p-polarized light by settingϑ = 0 (i.e. normal incidence) and replacing
ϕ by ϕ + π/2. Intensity and ESP components are then seen to obey the relations

(I, Px, Py, Pz)
M→−M−→ (I, −Px, −Py, Pz) (44a)

(I, Px, Py, Pz)
ϕ→−ϕ,M→−M−→ (I, Px, −Py, −Pz). (44b)

In particular, there is no MLD in the sense of an intensity asymmetry upon reversal of
M . There is, however, a difference between the intensities forϕ = 0 and ϕ = π/2,
i.e. for normally incident s- and p-polarized light. If one defines dichroism as an intensity
asymmetry occurring for two orthogonal states of photon polarization, one can therefore
identify a MLD.

For off-normally incidentcircularly polarized lightof helicity σ+ or σ−, the intensity is

I (ϑ, ϕ, σ±) = 1

2

{
sin2 ϑ

(
|M(1++)

⊥ |2 + |M(1−−)
⊥ |2

)
±2 sinϑ cosϕ

(
Re(M(1++)

⊥ M
(1++)
‖

?
) − Re(M(1−−)

⊥ M
(1−−)
‖

?
)
)

− sin 2ϑ sinϕ
(

Im(M
(1++)
⊥ M

(1++)
‖

?
) − Im(M

(1−−)
⊥ M

(1−−)
‖

?
)
)

+(1 − sin2 ϑ sin2 ϕ)
(
|M(1++)

‖ |2 + |M(1−−)
‖ |2

)
+ (1 − sin2 ϑ cos2 ϕ)

(
|M(2+−)

‖ |2 + |M(2−+)
‖ |2

)}
. (45)

The two terms involving real and imaginary parts ofM-products imply two different types
of MCD. The second one is associated with the MLD for p-polarized light—cf. the last
term in equation (41)—which vanishes forϕ = 0, i.e. for M in the plane of incidence.
This MCD is independent of the helicity of the incident radiation. The first MCD arises if
M is not perpendicular to the plane of incidence. It further shows the symmetry relation
I (σ+, +M ) = I (σ−, −M ). Since the ESP expressions are rather lengthy, it may suffice
to say that all three components are generally nonzero.

For normally incidentcircularly polarized light (ϑ = 0 and arbitraryϕ) the above
intensity formula reduces to

I (σ±) =
(
|M(1++)

‖ |2 + |M(1−−)
‖ |2 + |M(2+−)

‖ |2 + |M(2−+)
‖ |2

) /
2 (46)

and the ESP is given by

Px(σ±) = 1

2I

(
|M(1++)

‖ |2 − |M(1−−)
‖ |2 + |M(2+−)

‖ |2 − |M(2−+)
‖ |2

)
(47a)

Py(σ±) = ±
(

Im(M
(1++)
‖ M

(2−+)
‖

?
) − Im(M

(1−−)
‖ M

(2+−)
‖

?
)
) /

I (47b)

Pz(σ±) = ∓
(

Re(M(1++)
‖ M

(2−+)
‖

?
) + Re(M(1−−)

‖ M
(2+−)
‖

?
)
) /

I. (47c)

Evidently, there is no MCD and all three components of the ESP are generally nonzero, in
contrast to the case ‘M normal to the surface’ treated above.Px (along the direction of
M ) is seen to be exchange induced, reversing its sign upon reversal ofM , whereasPz can
be produced by SOC alone, reducing to the usual optical orientation (Fano) effect in the
nonmagnetic limit.Py requires the simultaneous presence of magnetic exchange and SOC.
This situation is analogous to the above-discussed case of p-polarized light forϕ = 0.
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On the grounds of our results it may appear surprising that in a recent photoemission
experiment using normally incident circularly polarized light (Schneideret al 1991b), no
ESP componentPz normal to the surface was detected. This finding was interpreted as
follows. First, the spin-quantization axis is predominantly defined byM , which should
lead to vanishing ESP components normal to the magnetization. Second, because of the
exchange splitting and the reduced symmetry (with respect to the nonmagnetic solid) the
electronic wave functions change symmetry and the dipole selection rules leading to optical
orientation do not hold. We therefore wish to point out that our above analytical results are
supported by numerical calculations for Ni(001) (Henket al 1994), which yield not only a
strong ESP in the direction ofM but also two ESP components normal toM . The latter
are, however, much smaller with values within the statistical error of the above experiment.

Reversing the photon helicity orM , we obtain the relations

(I, Px, Py, Pz)
σ±→σ∓−→ (I, Px, −Py, −Pz) (48a)

(I, Px, Py, Pz)
M→−M−→ (I, −Px, −Py, Pz). (48b)

Dichroic effects and spin polarizations for magnetization parallel to the surface are
summarized in table 5. Prototype numerical results for Ni(001) with a single photon energy
(Henk et al 1994) fully confirm the present qualitative predictions.

4.2. The fcc (111) and hcp (0001) surfaces

We now turn to the above-defined cases (ii) and (iii) relating to magnetic surfaces with
in-plane magnetization, which in the nonmagnetic limit have threefold rotational symmetry
and three mirror planes (symmetry 3m), e.g. (111) surfaces of fcc or (0001) surfaces of
hcp systems. We recall that for 3m symmetry the irreducible representations of the double
group consist of the two-dimensional one,36, and two one-dimensional ones degenerate
by time-reversal symmetry,34 and35.

Table 4. Symmetry-adapted basis functions for systems with one mirror plane—(x, z)—andM
along they-axis, i.e. parallel to the surface and perpendicular to the mirror plane. The spin- and
angular-momentum-quantization axes are chosen normal to the surface (Pauli spinorsχ+ and
χ−). l and m denote the quantum numbers of the angular momentum and its projection onto
the z-axis.

|g+
n 〉 |g−

n 〉
γ1 Y−m

l χ− + iYm
l χ+ Ym

l χ+ + iY−m
l χ− m odd

γ2 −Y−m
l χ− + iYm

l χ+ Ym
l χ+ − iY−m

l χ− m even

Let us now specialize to case (ii), i.e. whereM is perpendicular to a mirror plane, for
example the (xz)-plane, withM pointing in nearest-neighbour directions. There remains
one nontrivial symmetry operation, the reflection at this plane, i.e. we are concerned with the
double groupm. In the magnetic case there are only two one-dimensional representations,
γ1 andγ2, which are connected to the former by34 → γ1, 35 → γ2, and36 → γ1 + γ2

(Falicov and Ruvalds 1968). Furthermore,γ1 and γ2 are degenerate by time-reversal
symmetry. Their spin-angular basis functions are given in table 4.

For s-polarized light with the azimuthal angleϕ of the electric field vectorE, we obtain
the following expression for the photoemission intensity:

I (ϕ) = 2 sin2 ϕ
(
|M(++)

1 |2 + |M(−−)

2 |2
)

+ 2 cos2 ϕ
(
|M(−+)

1 |2 + |M(+−)

2 |2
)

(49)
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and for the ESP

Px = −2

I
sin 2ϕ

(
Re(M(++)

1 M
(−+)

1

?
) − Re(M(−−)

2 M
(+−)

2

?
)
)

(50a)

Py = 2

I

{
sin2 ϕ

(
|M(++)

1 |2 − |M(−−)

2 |2
)

− cos2 ϕ
(
|M(−+)

1 |2 − |M(+−)

2 |2
)}

(50b)

Pz = −2

I
sin 2ϕ

(
Im(M

(++)

1 M
(−+)

1

?
) + Im(M

(−−)

2 M
(+−)

2

?
)
)

(50c)

whereM
(s+)

1 (M(s−)

2 ) denotes a transition matrix element from initial state|i+〉 (|i−〉) with
complex expansion coefficientsα+

n (α−
n ), cf. equation (2), into final state|fs〉. It is important

to note that in the present case the expansion coefficients cannot be chosen as real because
the basis functions behave differently under time reversal and mirror operations. Thus, in
M2 the complex conjugate expansion coefficients of the respective initial state appear, in
contrast to the case forM1.

The above expressions evidently obey the symmetry relation

(I, Px, Py, Pz)
ϕ→−ϕ−→ (I, −Px, Py, −Pz). (51)

Since the matrix elementsM1 and M2 differ from each other, the intensityI (ϕ) changes
upon reversal of the magnetization, i.e. there is MLD. This MLD is closely related to the
‘linear spin-polarization effect’, which occurs in photoemission by s-polarized light from
nonmagnetic surfaces with 3m symmetry (Tamuraet al 1987). In the nonmagnetic limit we
haveM

(++)

1 = M
(−+)

1 andM
(−−)

2 = M
(+−)

2 . Equations (49) and (50c) thus become

I (ϕ) = 2
(|M1|2 + |M2|2

)
(52a)

Px = −2

I
sin 2ϕ

(|M1|2 − |M2|2
)

(52b)

Py = −2

I
cos 2ϕ

(|M1|2 − |M2|2
)

(52c)

Pz = 0 (52d)

whereM1 andM2 denote matrix elements of transitions from a linear combination of initial
states with34 and35 double-group symmetry into31

6 final states. In the rather complicated
derivation of the last equations from those for the magnetic case one has to employ the fact
that the final state is of31

6 spatial symmetry. The photoemission intensity and the modulus
of the ESP vector are independent of the azimuthϕ. For ϕ = π/4 no ESP component
parallel to they-axis, i.e. parallel to the magnetization, is brought about by SOC and there
is no MLD in this case.

If M is not perpendicular to a mirror plane of the nonmagnetic system, i.e. our case
(iii), there is no spatial symmetry operation except the trivial one. Our analytical results
(not shown here) indicate that for generalM and general azimuthal anglesϕ of the surface-
parallel electric field vectorE there is always MLD. It is absent, however, in the special
cases whereM is in the mirror plane andE is either parallel or perpendicular toM . From
the ‘nonmagnetic’ expressions (52) we see that in these special casesPx , the (SOC-induced)
ESP component parallel toM , vanishes.

The above MLDs fors-polarizedlight and the ESP symmetry relations are confirmed
by numerical relativistic layer KKR photoemission calculations, which we have carried out
for ferromagnetic Ni(111). At photon energies around 28 eV these new types of MLD are
so strong that they should be easily detectable in experiments.

For circularly polarizedlight at normal incidence, which is a coherent superposition of
s-polarized light withϕ andϕ +π/2, the above impressions imply that there is no intensity
asymmetry, i.e. no MCD, and all three ESP components are generally nonzero.
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For p-polarizedlight the analytical expressions get rather lengthy. Suffice it to say that
one generally obtains three nonzero ESP components and a MLD, which is a superposition
of the MLD found for s-polarized light with a new one, which is akin to the one found in
section 4.2. Forcircularly polarized light at off-normal incidence, we obtain MCD, ifM
is parallel to the plane of incidence.

5. The connection between magnetic dichroism and nonmagnetic spin-polarization
effects

From the various specific cases which we have analysed above, a general picture emerges of
the interplay of exchange interaction and spin–orbit coupling (SOC) producing photoelectron
spin polarization and magnetic dichroism.

Since the spin-polarization effects, which occur innonmagnetic systems as a
consequence of SOC, are an essential ingredient for understanding the results from magnetic
systems, we first briefly summarize these effects.Circularly polarized light produces an
electron spin-polarization (ESP) vectorP aligned with the helicity of the light, which is well
known as the Fano effect or optical orientation (cf., e.g., Wöhlecke and Borstel 1984, and
references therein). In the case of normal incidence, there is thusP normal to the surface.
Contrary to a long-held common belief, ESP also occurs forlinearly polarized lightin three
different ways. The first such ‘linear spin-polarization effect’ (LSPE) was theoretically
predicted by Tamuraet al (1987) and experimentally confirmed by Heinzmann’s group
(Schmiedeskampet al 1988) for surfaces with threefold rotational symmetry: s-polarized
light produces an in-planeP because of a peculiarity of the double-group symmetry34,5.
A second LSPE was found theoretically (Tamura and Feder 1991a, b) and experimentally
(Schmiedeskampet al 1991, Irmeret al 1992) for off-normally incident p-polarized light for
surfaces with two-, three- and fourfold rotational symmetry. It consists in an ESP component
perpendicular to the reaction plane. Thirdly, for surfaces with twofold rotational symmetry,
s-polarized light was recently predicted to produce an ESP component normal to the surface
(Henk and Feder 1994). This effect is due to spin–orbit coupling between states with63

and64 spatial symmetry. It was recently verified by experiment (Irmeret al 1995).
Now consider light of arbitrary polarization incident on amagneticsemi-infinite system

with magnetizationM . If there was no spin–orbit coupling, the exchange interaction would
produce only a photoelectron spin-polarization vectorPex aligned parallel toM . Upon
reversal ofM , Pex is reversed and the intensity does not change. Taking into account
spin–orbit coupling and going to the limit of vanishing exchange splitting, one retrieves
the above-described ESP exclusively due to SOC, which we may callPso. Naturally it
does not change sign withM . The phenomena observed for magnetic systems depend
on the relative orientation ofPso and M . If Pso is perpendicular toM , the P of the
photoelectrons has three components: an exchange-induced one alongM , a SOC-induced
one alongPso, and a third one which requires the simultaneous presence of exchange and
SOC. In this case, the intensity does not depend on the direction ofM , i.e. there is no
magnetic (circular or linear) dichroism. IfPso is parallel toM , P consists of two additive
terms, an exchange-induced one, which changes sign withM , and a SOC-induced one,
which does not. The matrix element combinations, which occur in the latter, also provide
an additive contribution to the total intensity, which changes sign withM . Consequently,
the intensity changes upon reversal ofM , i.e. there ismagnetic dichroism. We would
like to emphasize that these findings are quite general and hold for both MCD and for the
various types of MLD associated with the above spin–orbit-induced ‘linear spin-polarization
effects’.
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Table 5. Magnetic dichroic effects and photoelectron spin-polarization components for
magnetizationM parallel to the surface (x-axis) and linearly polarized (s, p) as well as circularly
polarized light. The signs in brackets indicate whether the respective ESP component occurs (+
sign) or does not occur (− sign) if only SOC (first sign), only exchange (second sign), or both
(third sign) are present. MLD and MCD arise if a spin-polarization componentPx parallel to
M is produced by SOC in the nonmagnetic limit. For circularly polarized light,ϑ denotes the
polar angle of incidence, and the azimuthal angleϕ is taken as arbitrary.

Light Group Px Py Pz I

Linear
s 2mm (−, +, +) (−, −, +) (+, −, +)

4mm (−, +, +) (−, −, +) (−, −, +)

3m (+, +, +) (+, −, +) (−, −, +) MLD
p 2mm (+, +, +) (+, −, +) (+, −, +) MLD

4mm (+, +, +) (+, −, +) (−, −, +) MLD
3m (+, +, +) (+, −, +) (−, −, +) MLD

Circular
ϑ = 0 (−, +, +) (−, −, +) (+, −, +)

ϑ 6= 0 (+, +, +) (+, −, +) (+, −, +) MCD

Our main results are summarized in tables 1 and 5. In the case of ‘magnetizationM
normal to the surface’, 2mm surfaces exhibit both MLD and MCD, whereas for 3m and
4mm no MLD occurs, because the nonmagnetic LSPEs produce no ESP component normal
to the surface, i.e. in the direction ofM . In all three cases, MCD occurs. IfM is parallel
to the surface (see table 5), p-polarized light produces MLD for all surfaces, and s-polarized
light produces MLD for 3m surfaces. Circularly polarized light generally produces MCD
except in the special case of normal incidence.

6. Concluding remarks

Our analytical results explicitly confirm findings from general symmetry arguments.
Moreover, however, they reveal in detail the physical origin of the various magnetic
dichroisms and spin-polarization effects in terms of an interplay between spin–orbit coupling
and exchange. In the limit of vanishing magnetization we retrieve purely spin–orbit-induced
spin-polarization effects, which occur for circularly and for linearly polarized light on
nonmagnetic surfaces. This connection provides a deeper understanding of MCD and several
types of MLD. As our dichroism and spin-polarization expressions contain terms involving
single-group initial states mixed by spin–orbit coupling, they can be employed to infer from
experimental data the types of initial states and their hybridization underlying individual
spectral features.

Experimentally, in addition to MCD for various cases, MLD has so far been observed
for p-polarized light and magnetization parallel to the surface, which is in line with our
analytical results. Beyond this we predict, for surfaces with a twofold normal rotation axis
and magnetization normal to the surface, a new type ofs-polarized-lightMLD associated
with a photoelectron spin polarization normal to the surface. Since clean surfaces usually
have an in-plane magnetization, we would like to emphasize that our results are also valid
for ultrathin magnetic films (i.e. in the monolayer regime). Further, we predict another MLD
for surfaces with a threefold rotational axis (in the nonmagnetic limit) and magnetization
parallel to the surface. This MLD is associated with the spin–orbit effect fors-polarized
light, which for nonmagnetic surfaces is known to produce an in-plane component of the
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photoelectron spin polarization.
Since our analytical expressions rely on an effective one-electron picture, which provides

a good approximation for valence-band photoemission, their applicability to core-state
photoemission, where many-body effects like multiplet and satellite structure are important
(cf., e.g., Thole and van der Laan (1994) and references therein), is restricted to special
cases for which a modified one-electron picture may still lead to reasonable results (cf., e.g.,
Tamuraet al 1994).

The formulae derived in this paper could be computationally implemented and applied
to specific crystalline surface systems. This would, however, have two drawbacks: firstly,
stationary initial states of a semi-infinite system imply the neglect of hole lifetime effects,
which are well known to be important; secondly, the present two-component approximation
is presumably not sufficiently accurate. Quantitatively realistic calculations should therefore
rather be based on our relativistic Green function formalism (Halilovet al 1993). The
results of such calculations for Ni(001) withM normal and parallel to the surface (see,
Scheunemannet al (1994) and Henket al (1994), respectively) and for ultrathin Co films
on Cu(001) (Henket al 1995) are fully in line with the present analytical findings.
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